Abstract Convexity and Cone-vexing Abstractions

نویسنده

  • S. S. KUTATELADZE
چکیده

CONVEXITY AND CONE-VEXING ABSTRACTIONS 3 X × Φ and the cone ∆2(X) × {0} × R+ constitute a nonoblate pair in X × Y × R. Cones K1 and K2 in a topological vector space X are in general position provided that (1) the algebraic span of K1 and K2 is some subspace X0 ⊂ X; i.e., X0 = K1 −K2 = K2 −K1; (2) the subspace X0 is complemented; i.e., there exists a continuous projection P : X → X such that P (X) = X0; (3) K1 and K2 constitute a nonoblate pair in X0. Let σn stand for the rearrangement of coordinates σn : ((x1, y1), . . . , (xn, yn)) 7→ ((x1, . . . , xn), (y1, . . . , yn)) which establishes an isomorphism between (X × Y ) and X × Y . Sublinear operators P1, . . . , Pn : X → E ∪ {+∞} are in general position if so are the cones ∆n(X)×E n and σn(epi(P1)×· · ·×epi(Pn)). A similar terminology applies to convex operators. Given a cone K ⊂ X, put πE(K) := {T ∈ L (X,E) : Tk ≤ 0 (k ∈ K)}. We readily see that πE(K) is a cone in L (X,E). Theorem. Let K1, . . . , Kn be cones in a topological vector space X and let E be a topological Kantorovich space. If K1, . . . , Kn are in general position then πE(K1 ∩ · · · ∩Kn) = πE(K1) + · · ·+ πE(Kn). This formula opens a way to various separation results. Sandwich Theorem. Let P,Q : X → E ∪ {+∞} be sublinear operators in general position. If P (x) + Q(x) ≥ 0 for all x ∈ X then there exists a continuous linear operator T : X → E such that −Q(x) ≤ Tx ≤ P (x) (x ∈ X). Many efforts were made to abstract these results to a more general algebraic setting and, primarily, to semigroups. The relevant separation results are collected in [10]. 3. Calculus. Consider a Kantorovich space E and an arbitrary nonempty set A. Denote by l∞(A, E) the set of all order bounded mappings from A into E; i.e., f ∈ l∞(A, E) if and only if f : A → E and the set {f(α) : α ∈ A} is order bounded in E. It is easy to verify that l∞(A, E) becomes a Kantorovich space if endowed with the coordinatewise algebraic operations and order. The operator εA,E acting from l∞(A, E) into E by the rule εA,E : f 7→ sup{f(α) : α ∈ A} (f ∈ l∞(A, E))

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Idempotent and Tropical Mathematics and Problems of Mathematical Physics

convexity and cone-vexing abstractions Semen S. Kutateladze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Interval analysis for algorithms of idempotent and tropical mathematics Grigory L. Litvinov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Dequantization procedures related to the Ma...

متن کامل

Dequantization of coadjoint orbits: the case of exponential Lie groups

convexity and cone-vexing abstractions Semen S. Kutateladze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Interval analysis for algorithms of idempotent and tropical mathematics Grigory L. Litvinov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Dequantization procedures related to the Ma...

متن کامل

A full NT-step O(n) infeasible interior-point method for Cartesian P_*(k) –HLCP over symmetric cones using exponential convexity

In this paper, by using the exponential convexity property of a barrier function, we propose an infeasible interior-point method for Cartesian P_*(k) horizontal linear complementarity problem over symmetric cones. The method uses Nesterov and Todd full steps, and we prove that the proposed algorithm is well define. The iteration bound coincides with the currently best iteration bound for the Ca...

متن کامل

Linear Project Second Order-Cone Programme

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Linear Project Second Order-Cone Programme Zhenhua Li, Wenling Zhao *1,2 School of Science,Shandong University of Technology, Zibo,255091,China [email protected] Abstract In recent years cone constraint optimization problems has been favored by scholars, especially for the second-order cone constraints programming problem,the...

متن کامل

A Convexity Theorem for Torus Actions on Contact Manifolds

We show that the image cone of a moment map for an action of a torus on a contact compact connected manifold is a convex polyhedral cone and that the moment map has connected fibers provided the dimension of the torus is bigger than 2 and that no orbit is tangent to the contact distribution. This may be considered as a version of the Atiyah Guillemin Sternberg convexity theorem for torus action...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008